ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР - significado y definición. Qué es ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР - definición

ГЭБ
ГЭБ; Гемато-энцефалический барьер; Гематоликворный барьер
  • Модель [[аквапорин]]а — молекулы воды могут свободно поступать в клетку через центр белковой молекулы, образующей канал
  • Астроцит (окрашен зелёным) в клеточной культуре
  • Базальная мембрана эпителиальной клетки
  • 3D-модель гематоэнцефалического барьера
  • Электронно-микроскопическое изображение перицита (справа) и просвета сосуда с тремя [[эритроцит]]ами (слева)
  • Макс Левандо́вский (1876—1916) впервые использовал термин «Blut-Hirn-Schranke» (''перегородка между кровью и мозгом'') в [[1900 год]]у
  • deadlink=no }}</ref>
  • Олигодендроцит]]<br>
5. [[Астроцит]]<br>
6. [[Миелин]]<br>
7. [[Микроглия]]<br>
8. [[Капилляр]]
  • Выведение веществ из ткани мозга в кровеносное русло
  • аквапори́на]], образующего канал
  • Схематическое изображение облегчённой диффузии (справа) и мембранного канала (слева)
  • артериолы]] и капилляра мозга
  • Схематическое изображение плотного контакта
  • Сравнительная схема строения периферического и церебрального капилляров
  • Строение ГЭБ — от ткани мозга к плотному контакту
  • Простая диффузия через клеточную мембрану
  • Сравнительная схема [[фагоцитоз]]а, [[пиноцитоз]]а и рецептор-опосредованного [[эндоцитоз]]а
  • Схема транспорта различных веществ через гематоэнцефалический барьер
  • Схема миграции лейкоцитов через ГЭБ
  • Щелевые клеточные соединения]] (схема)
  • Взаимоотношение астроцитов и эндотелиоцитов

ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР         
(от гемо ... и греч. enkephalos - мозг), физиологический механизм, регулирующий обмен веществ между кровью, спинномозговой жидкостью и мозгом. Защищает центральную нервную систему от проникновения чужеродных веществ, введенных в кровь, или продуктов нарушенного обмена веществ.
Гемато-энцефалический барьер         
(от Гемато... и греч. enkephalos - мозг)

физиологический механизм, регулирующий обмен веществ между кровью, спинномозговой жидкостью и мозгом. Понятие Г.-э. б. введено советским физиологом Л. С. Штерн и швейцарским учёным Р. Готье в 1921. Подобно другим гисто-гематическим барьерам (См. Гисто-гематические барьеры), Г.-э. б. осуществляет также защитные функции, препятствуя проникновению в центр, нервную систему некоторых чужеродных веществ, введённых в кровь, или продуктов нарушенного обмена веществ, образовавшихся в самом организме. От проницаемости Г.-э. б. в направлении кровь → мозг и мозг → кровь для различных веществ зависит в значительной степени состояние нервных клеток головного и спинного мозга, особо чувствительных даже к небольшим колебаниям состава и физико-химических свойств окружающей среды. Представление о Г.-э. б. как едином механизме пересматривается. Установлено, что в мозге действует сложная многообразная система специфических образований, анатомические, физиологические, физико-химеские и биохимеские особенности которых обеспечивают их барьерные свойства. Через различные участки Г.-э. б. из крови в центральную нервную систему проникают те или иные вещества, необходимые для питания и деятельности нервных образований, различающихся как строением, так и химическим составом. Анатомическими элементами Г.-э. б. служат стенки мозговых капилляров и прекапилляров, сосудистые сплетения желудочков мозга, нейроглия, мозговые оболочки и т.д. Для осуществления барьерных функций большое значение имеет т. н. основное вещество, находящееся между клетками стенок капилляров, в состав которого входят комплексы из белков и полисахаридов. Состояние этого вещества в значительной степени определяет проницаемость Г.-э. б.

Для исследования состояния Г.-э. б. применяют красители, соли, органические и неорганические соединения, радиоактивные изотопы фосфора, и́ода, брома и др.

Наряду с вредными веществами Г.-э. б. может препятствовать проникновению в центральную нервную систему введённых в кровь лекарств, препаратов (например, соединений мышьяка, ртути, висмута, некоторых антибиотиков и др.), что затрудняет лечение ряда заболеваний мозга. В эксперименте и клинике применяются различные методы повышения проницаемости Г.-э. б. или обхода его путём введения химических веществ в желудочки мозга или спинномозговой канал.

Ëèò.: Øòåðí Ë. Ñ., Íåïîñðåäñòâåííàÿ ïèòàòåëüíàÿ ñðåäà îðãàíîâ è òêàíåé..., Избр. труды, М., 1960; Кассиль Г. Н., Гемато-энцефалический барьер, М., 1963; Физиология и патология гисто-гематических барьеров, М., 1968, с. 170-254; Bakay L., The blood-brain barrier, Springfield (Ill.) 1956; Tschirgi R. D., The blood-brain barrier, в кн.: Biology of Neuroglia, Springfield (Illinois), 1958.

Г. Н. Кассиль.

Шотки барьер         
Шотки барьер; Барьер Шотки; Шоттки барьер

Потенциальный барьер, образующийся в приконтактном слое полупроводника, граничащем с металлом; назван по имени немецкого учёного В. Шотки (W. Schottky). исследовавшего такой барьер в 1939. Для возникновения потенциального барьера необходимо, чтобы работы выхода (См. Работа выхода) металла и полупроводника были различными, на что впервые указал сов. учёный Б. И. Давыдов в 1939. При сближении полупроводника n-типа с металлом, имеющим большую, чем у полупроводника, работу выхода Ф, металл заряжается отрицательно, а полупроводник - положительно, т.к. электронам легче перейти из полупроводника в металл, чем обратно (при сближении полупроводника р-типа с металлом, обладающим меньшей Ф, металл заряжается положительно, а полупроводник - отрицательно). При установлении равновесия между металлом и полупроводником возникает Контактная разность потенциалов: Uk =м - Фп)/е (е - заряд электрона). Из-за большой электропроводности металла электрическое поле в него не проникает, и разность потенциалов Uk создаётся в приповерхностном слое полупроводника. Направление электрического поля в этом слое таково, что энергия основных носителей заряда в нём больше, чем в толще полупроводника. Это означает, что в полупроводнике n-типа энергетической зоны в приконтактной области изгибаются вверх, а в полупроводнике р-типа - вниз (см. рис.). В результате в полупроводнике вблизи контакта с металлом при Фм > Фп для полупроводника n-типа, или при Фм < Фп для полупроводника р-типа возникает потенциальный барьер. Высота Ш. б. Ф0 = Фм - Фп. В реальных структурах металл - полупроводник это соотношение не выполняется, т.к. на поверхности полупроводника или в тонкой диэлектрической прослойке, часто образующейся между металлом и полупроводником, обычно имеются локальные электронные состояния; находящиеся в них электроны экранируют влияние металла так, что внутренне поле в полупроводнике определяется этими поверхностными состояниями и высота Ш. б. не зависит от Фм. Как правило, наибольшей высотой обладают Ш. б., получаемые нанесением на полупроводник n-типа плёнки Au. На высоту Ш. б. оказывает также влияние сила "электрического изображения" (см. Шотки эффект).

Ш. б. обладает выпрямляющими свойствами. Ток через Ш. б. при наложении внешнего электрического поля создаётся почти целиком основными носителями заряда. Величина тока определяется скоростью прихода носителей из объёма к поверхности или в случае полупроводников с высокой подвижностью носителей - током термоэлектронной эмиссии (См. Термоэлектронная эмиссия) в металл. Контакты металл - полупроводник с Ш. б. широко используются в сверхвысокочастотных детекторах и смесителях (см. Шотки диод), Транзисторах, Фотодиодах и в др.

Лит.: Стриха В. И., Бузанева Е. В., Радзиевский И. А., Полупроводниковые приборы с барьером Шоттки, М., 1974; Стриха В. И., Теоретические основы работы контакта металл - полупроводник, К., 1974; Милнс А., Фойхт Д., Гетеропереходы и переходы металл - полупроводник, пер. с англ., М., 1975.

Т. М. Лифшиц.

Энергетическая схема контакта металл - полупроводник; а - полупроводник и металл до сближения; б, в - идеальный контакт металла с полупроводником n- и p-типов; г - реальный контакт; М - металл, П - полупроводник, Д - диэлектрическая прослойка, С - поверхностные электронные состояния; Eвак, Eν, Eс- уровни энергии электрона у "потолка" валентной зоны, у "дна" зоны проводимости и в вакууме; EF - энергия Ферми.

Wikipedia

Гематоэнцефалический барьер

Гема́тоэнцефали́ческий барье́р (гемато-энцефалический барьер, ГЭБ) (от др.-греч. αἷμα, род. п. αἵματος — «кровь» и др.-греч. ἐγκέφαλος — «головной мозг») — физиологический гистогематический барьер между кровеносной системой и центральной нервной системой. ГЭБ имеют все позвоночные.

Главная функция ГЭБ — поддержание гомеостаза мозга. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. ГЭБ выполняет функцию высокоселективного фильтра, через который из артериального русла в мозг поступают питательные, биоактивные вещества; в направлении венозного русла с глимфатическим потоком выводятся продукты жизнедеятельности нервной ткани.

Вместе с тем, наличие ГЭБ затрудняет лечение многих заболеваний центральной нервной системы, так как он не пропускает целый ряд лекарственных препаратов.

Ejemplos de uso de ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР
1. Фуллерены преодолевают гематоэнцефалический барьер проще говоря, лезут в мозг.
2. Наш головной мозг имеет так называемый гематоэнцефалический барьер, защищающий его от проникновения различных веществ и инфекций.
3. Если бы радиацией был поврежден гематоэнцефалический барьер, жидкость попала бы в мозг, и это вызвало бы паралич или смерть пациента.
4. PT-141 не мягкое вещество, и оно не просто немного стимулирует систему обоняния - этот спрей активно действует, проникая через гематоэнцефалический барьер прямо в мозг.
5. При этом установлено, что некоторые наноматериалы, поступающие с воздухом, в дальнейшем могут определяться в различных органах и тканях, в том числе мозге, что не исключает возможности их проникновения через гематоэнцефалический барьер.
¿Qué es ГЕМАТОЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР? - significado y definición